Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Collaborative Process Optimization : An Approach to Individual Packaging Hollows

Title data

Schuh, Christian ; Rosemann, Bernd ; Oechsle, Oliver:
Collaborative Process Optimization : An Approach to Individual Packaging Hollows.
Athens : Athens Institute for Education and Research , 2016 . - 11 p.

Official URL: Volltext

Related URLs

Abstract in another language

The increasing number of variants in plastic packaging market leads to problems especially for small enterprises (SEs). With increasing customer needs, like individualized products, small lot sizes and short product life cycles, it becomes necessary to work more efficient and effective, especially across enterprise borders. Product Lifecycle Management (PLM) enables companies to handle complexity and variants in their product development process. Therefore, this established PLM-approach is extended in its usage for SEs and as an operational platform between specialized companies, so called “works-flow”.
In prevalent approach expert enterprises for each part of the value chain for plastic packaging hollows have established and work at new products separately. Results of this traditional way are delays, high costs and low efficiency. Therefore, this interrupted value chain is closed and the expert enterprises are brought together. This is the goal of "works-flow", a disruptive approach for an integrated and digital value chain network. To solve the leading problems there are four main issues. Reducing the interface problems by using an integrated and digital product model for the whole value chain network. Establishing base knowledge for the process - design, construction, production - to build individual packaging hollows. Developing a modularized systematic for the product and its toolset based upon a predesigned parametric CAD model. Reducing the ramp up time for the production by handling process data knowledge and automatic processes for the construction of tool-sets. Therefore, connecting and enabling the separated SEs for design, tooling and production to an integrated operational process chain leads to cost reduction in the whole process chain, a shorter Time-to-market and an earlier Start-of-production. Furthermore, it enables a non-before achieved process quality and process stability. The initial usage of the “works-flow”-approach leaded to a reduction in the Time-to-market up to 60% and a higher product quality.

Further data

Item Type: Book / Monograph
Refereed: Yes
Keywords: Production Optimization; Collaboration; Digital Workflow; Product Lifecycle Management; Tooling; Individualization
Institutions of the University: Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Manufacturing and Remanufacturing Technology
Profile Fields > Emerging Fields > Innovation and Consumer Protection
Profile Fields > Emerging Fields > Food and Health Sciences
Research Institutions > Affiliated Institutes > Fraunhofer-Projectgroup Processinnovation
Faculties
Profile Fields
Profile Fields > Emerging Fields
Research Institutions
Research Institutions > Affiliated Institutes
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences
600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 07 Apr 2017 06:41
Last Modified: 10 Jan 2024 13:21
URI: https://eref.uni-bayreuth.de/id/eprint/36769