Titelangaben
Schweikart, Alexandra ; Zimin, Denys ; Handge, Ulrich A. ; Bennemann, Michael ; Altstädt, Volker ; Fery, Andreas ; Koch, Kerstin:
Fabrication of Artificial Petal Sculptures by Replication of Sub-micron Surface Wrinkles.
In: Macromolecular Chemistry and Physics.
Bd. 211
(2010)
Heft 2
.
- S. 259-264.
ISSN 1521-3935
DOI: https://doi.org/10.1002/macp.200900543
Abstract
In this contribution, we discuss wrinkling as a process resulting in well-defined periodic micron-sized structures, as known from the interface of several plant cells. We show possible pathways to transfer this principle to artificial materials such as epoxy resins or polymers. While topographical structuring of surfaces by wrinkling is meanwhile well established for elastomers like poly (dimethyl siloxane), so far the step towards other classes of materials has not been taken. This puts several limitations to potential applications of artificial wrinkled structures, as elastomers show poor dimensional stability, low optical quality, and tend to swell in organic solvents. As well, artificial structures formed by wrinkling are not tension-free on the microscopic level, which makes them metastable. Residual mechanical tensions can affect dimensional stability on long timescales. We introduce two processes, micro thermo-forming and molding, as means to overcome these restrictions and to pattern non-elastomeric materials by using wrinkled elastomers as templates. The two approaches allow the formation of negative and positive replicas and allow the transfer of sub-micron features with high fidelity.