Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice

Title data

Meier, Thomas ; Petitgirard, Sylvain ; Khandarkhaeva, Saiana ; Dubrovinsky, Leonid:
Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice.
In: Nature Communications. Vol. 9 (2018) . - 2766.
ISSN 2041-1723
DOI: https://doi.org/10.1038/s41467-018-05164-x

Abstract in another language

Hydrogen bond symmetrisations in H-bonded systems triggered by pressure-induced nuclear quantum effects (NQEs) is a long-known concept but experimental evidence in high-pressure ices has remained elusive with conventional methods. Theoretical works predicted quantum-mechanical tunneling of protons within water ices to occur at pressures above 30 GPa, and the H-bond symmetrisation transition to occur above 60 GPa. Here we used 1H-NMR on high-pressure ice up to 97 GPa, and demonstrate that NQEs govern the behavior of the hydrogen bonded protons in ice VII already at significantly lower pressures than previously expected. A pronounced tunneling mode was found to be present up to the highest pressures of 97 GPa, well into the stability field of ice X, where NQEs are not anticipated in a fully symmetrised H-bond network. We found two distinct transitions in the NMR shift data at about 20 GPa and 75 GPa attributed to the step-wise symmetrisation of the H-bond.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Group Material Sciences > Professor Materials Physics and Technology at Extreme Conditions > Professor Materials Physics and Technology at Extreme Conditions - Univ.-Prof. Dr. Natalia Doubrovinckaia
Research Institutions
Research Institutions > Central research institutes
Research Institutions > Central research institutes > Bavarian Research Institute of Experimental Geochemistry and Geophysics - BGI
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Group Material Sciences
Faculties > Faculty of Mathematics, Physics und Computer Science > Group Material Sciences > Professor Materials Physics and Technology at Extreme Conditions
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 550 Earth sciences, geology
Date Deposited: 29 Aug 2018 07:19
Last Modified: 10 Aug 2023 13:00
URI: https://eref.uni-bayreuth.de/id/eprint/45619