Title data
Stüven, Birthe ; Stabel, Robert ; Ohlendorf, Robert ; Beck, Julian ; Schubert, Roman ; Möglich, Andreas:
Characterization and engineering of photoactivated adenylyl cyclases.
In: Biological Chemistry.
Vol. 400
(2019)
Issue 3
.
- pp. 429-441.
ISSN 1437-4315
DOI: https://doi.org/10.1515/hsz-2018-0375
Project information
Project financing: |
Alexander von Humboldt-Stiftung Deutsche Forschungsgemeinschaft |
---|
Abstract in another language
Cyclic nucleoside monophosphates (cNMP) serve as universal second messengers in signal transduction across prokaryotes and eukaryotes. As signaling often relies on transiently formed microdomains of elevated second messenger concentration, means to precisely perturb the spatiotemporal dynamics of cNMPs are uniquely poised for the interrogation of the underlying physiological processes. Optogenetics appears particularly suited as it affords light-dependent, accurate control in time and space of diverse cellular processes. Several sensory photoreceptors function as photoactivated adenylyl cyclases (PAC) and hence serve as light-regulated actuators for the control of intracellular levels of 3′, 5′-cyclic adenosine monophosphate. To characterize PACs and to refine their properties, we devised a test bed for the facile analysis of these photoreceptors. Cyclase activity is monitored in bacterial cells via expression of a fluorescent reporter, and programmable illumination allows the rapid exploration of multiple lighting regimes. We thus probed two PACs responding to blue and red light, respectively, and observed significant dark activity for both. We next engineered derivatives of the red-light-sensitive PAC with altered responses to light, with one variant, denoted DdPAC, showing enhanced response to light. These PAC variants stand to enrich the optogenetic toolkit and thus facilitate the detailed analysis of cNMP metabolism and signaling.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Keywords: | adenylyl cyclase; BLUF; optogenetics; phytochrome; sensory photoreceptor; synthetic biology |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry > Chair Biochemistry - Univ.-Prof. Dr. Andreas Möglich Faculties Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 570 Life sciences, biology |
Date Deposited: | 15 Jan 2019 14:56 |
Last Modified: | 14 Nov 2023 10:36 |
URI: | https://eref.uni-bayreuth.de/id/eprint/46923 |