Title data
Oldham, Carolyn ; Beer, Julia ; Blodau, Christian ; Fleckenstein, Jan ; Jones, Lydia ; Neumann, Christiane ; Peiffer, Stefan:
Controls on iron(II) fluxes into waterways impacted by acid mine drainage : A Damköhler analysis of groundwater seepage and iron kinetics.
In: Water Research.
Vol. 153
(2019)
.
- pp. 11-20.
ISSN 0043-1354
DOI: https://doi.org/10.1016/j.watres.2018.12.024
Abstract in another language
When acidic groundwater flows into an aquatic system the sediment water interface (SWI) acts as a transition zone between the groundwater and lake water, and often exhibits strong physical and biogeochemical gradients. The fate of groundwater-borne solutes, such as Fe(II), is determined by the balance between the exposure time during transport across the SWI and the reaction time within the SWI, however the relative role of groundwater seepage rates and iron kinetics on acidity generation in lakes is unknown. Porewater seepage velocities, porewater chemical profiles, and limnological data were collected across multiple field campaigns over the last two decades, in acid Mine Lake 77, in Lusatia, Germany.This rare data set was analyzed using a Damkoehler approach that compares exposure and reactions timescales, to determine that Fe(II) would typically be transported with little reaction across the SWI, spatially separating it from sediment-processes that produce alkalinity and providing a source of acidity to the lake. This Damk€ohler analysis further showed that remediation should be focused on reducing groundwater seepage velocities and enhancing exposure times. Strategic planting of submerged benthic macroalgae would slow groundwater inflows, as well as oxygenating overlying waters and supplying organic matter to the sediments. A similar Damkoehler analysis could be used to assess the fate of any groundwater-borne reactive chemicals (e.g. phosphorus) into lakes and streams.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Additional notes: | BAYCEER149583 |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Hydrology Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Hydrology > Chair Hydrology - Univ.-Prof. Dr. Stefan Peiffer Research Institutions Research Institutions > Research Centres Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER Faculties Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science |
Date Deposited: | 26 Mar 2019 09:20 |
Last Modified: | 26 Mar 2019 09:20 |
URI: | https://eref.uni-bayreuth.de/id/eprint/48095 |