Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

On the lengths of divisible codes

Title data

Kiermaier, Michael ; Kurz, Sascha:
On the lengths of divisible codes.
Bayreuth , 2019 . - 17 p.

Official URL: Volltext

Project information

Project title:
Project's official title
Project's id
Integer Linear Programming Models for Subspace Codes and Finite Geometry
No information

Project financing: Deutsche Forschungsgemeinschaft

Abstract in another language

In this article, the effective lengths of all q^r-divisible linear codes over GF(q) with a non-negative integer r are determined. For that purpose, the S_q(r)-adic expansion of an integer n is introduced. It is shown that there exists a q^r-divisible GF(q)-linear code of effective length n if and only if the leading coefficient of the S_q(r)-adic expansion of n is non-negative. Furthermore, the maximum weight of a q^r-divisible code of effective length n is at most the cross-sum of the S_q(r)-adic expansion of n.

This result has applications in Galois geometries.
A recent theorem of Nastase and Sissokho on the maximum sizes of partial spreads follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.

Further data

Item Type: Preprint, postprint
Keywords: divisible codes; constant dimension codes; partial spreads
Subject classification: Mathematics Subject Classification Code: 51E23 (05B40)
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics II (Computer Algebra)
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics II (Computer Algebra) > Chair Mathematics II (Computer Algebra) - Univ.-Prof. Dr. Michael Stoll
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematical Economics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematical Economics > Chair Mathematical Economics - Univ.-Prof. Dr. Jörg Rambau
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Result of work at the UBT: Yes
DDC Subjects: 000 Computer Science, information, general works > 004 Computer science
500 Science > 510 Mathematics
Date Deposited: 06 Apr 2019 21:00
Last Modified: 31 Jan 2020 10:51
URI: https://eref.uni-bayreuth.de/id/eprint/48605