Titelangaben
Etzion, Tuvi ; Kurz, Sascha ; Otal, Kamil ; Özbudak, Ferruh:
Subspace Packings : Constructions and Bounds.
Bayreuth
,
2019
. - 34 S.
Abstract
The Grassmannian G_q(n,k) is the set of all k-dimensional subspaces of the vector space GF(q)^n. It is well known that codes in the Grassmannian space can be used for error-correction in random network coding. On the other hand, these codes are q-analogs of codes in the Johnson scheme, i.e. constant dimension codes. These codes of the Grassmannian G_q(n,k) also form a family of q-analogs of block designs and they are called subspace designs. The application of subspace codes has motivated extensive work on the q-analogs of block designs.
In this paper, we examine one of the last families of q-analogs of block designs which was not considered before. This family called subspace packings is the q-analog of packings. This family of designs was considered recently for network coding solution for a family of multicast networks called the generalized combination networks. A subspace packing t-(n,k,lambda)^m_q is a set S of k-dimensional subspaces from G_q(n,k) such that each t-dimensional subspace of G_q(n,t) is contained in at most lambda elements of S. The goal of this work is to consider the largest size of such subspace packings.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Keywords: | random network coding; subspace codes; packings; designs; q-analogs |
Fachklassifikationen: | Mathematics Subject Classification Code: 51E20 (11T71 94B25) |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik > Lehrstuhl Wirtschaftsmathematik - Univ.-Prof. Dr. Jörg Rambau Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 21 Sep 2019 21:00 |
Letzte Änderung: | 23 Sep 2019 08:44 |
URI: | https://eref.uni-bayreuth.de/id/eprint/52371 |
Zu diesem Eintrag verfügbare Versionen
- Subspace Packings : Constructions and Bounds. (deposited 21 Sep 2019 21:00) [Aktuelle Anzeige]