Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

15,000 years of black carbon deposition : A post-glacial fire record from maar lake sediments (Germany)

Title data

Lehndorff, Eva ; Wolf, Mareike ; Litt, Thomas ; Brauer, Achim ; Amelung, Wulf:
15,000 years of black carbon deposition : A post-glacial fire record from maar lake sediments (Germany).
In: Quaternary Science Reviews. Vol. 110 (2015) . - pp. 15-22.
ISSN 0277-3791
DOI: https://doi.org/10.1016/j.quascirev.2014.12.014

Abstract in another language

Fires accompanied human development throughout the Holocene, leaving behind black carbon (BC) as residues from incomplete biomass burning. Here we used molecular fire markers, benzene polycarboxylic acids (BPCAs), to reconstruct fire history in two Eifel maar lakes, Germany. We hypothesized to find indications for (i) changes in BC related to ecosystem changes, (ii) an increase in BC influx at the onset of agriculture until modern times, and (iii) a change in BC quality due to technical progress in combustion, e.g., at the beginning of agriculture and at the onset of the Bronze Age. To calculate absolute BC influx into the maar lakes, we multiplied BC contents with sedimentation rates. The BC influx rates were elevated during tundra-like vegetation in the Late Pleistocene (up to 7.7 g BC m−2 a−1), followed by relatively constant 2.5 g BC m−2 a−1 from the Bølling interstadial (>13.7 kilo years before present, ka BP) until the early Atlantic when forest began to develop. Thereafter, BC influx increased with the onset of land use of Neolithic cultures in the region from 7.5 ka BP to rates of 7–9 g BC m−2 a−1. Noteworthy, also the quality of BC changed: higher ratios of five-to six-times carboxylated benzenes (B5CA/B6CA) pointed at colder, arable fires approximately 1000 years after first Neolithic activity from 6 to 4 ka BP (B5CA/B6CA increased from 1.0 to 2.0). From 4 ka BP (Bronze Age) to modern times increasing burning temperatures as indicated by dropping B5CA/B6CA ratios (from 2.0 to 1.0) were related to metallurgy and industrialization. Between 2.5 and 1 ka BP maximum BC influx rates were reached with ca 15 g BC m−2 a−1. With increasing combustion efficiency and a reduction of wild fires during the last centuries, total BC influx decreased, suggesting that fossil fuel combustion contributed less to total BC input into the lake sediments than former vegetation fires.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER151566
Keywords: Human-fire interaction; Palaeoclimate; Fire regime; Fire temperature
Institutions of the University: Research Institutions
Research Institutions > Central research institutes
Research Institutions > Central research institutes > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology > Chair Soil Ecology - Univ.-Prof. Dr. Eva Lehndorff
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Result of work at the UBT: No
DDC Subjects: 500 Science
500 Science > 550 Earth sciences, geology
Date Deposited: 22 Jan 2020 10:59
Last Modified: 30 Oct 2024 08:10
URI: https://eref.uni-bayreuth.de/id/eprint/54035