Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Performance Prediction of Explicit ODE Methods on Multi-Core Cluster Systems

Titelangaben

Scherg, Markus ; Seiferth, Johannes ; Korch, Matthias ; Rauber, Thomas:
Performance Prediction of Explicit ODE Methods on Multi-Core Cluster Systems.
In: Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering. - New York, NY : ACM , 2019 . - S. 139-150
ISBN 978-1-4503-6239-9
DOI: https://doi.org/10.1145/3297663.3310306

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Selbstadaption für zeitschrittbasierte Simulationstechniken auf heterogenen HPC-Systemen (SeASiTe)
01IH16012A

Projektfinanzierung: Bundesministerium für Bildung und Forschung

Abstract

When migrating a scientific application to a new HPC system, the program code usually has to be re-tuned to achieve the best possible performance. Auto-tuning techniques are a promising approach to support the portability of performance. Often, a large pool of possible implementation variants exists from which the most efficient variant needs to be selected. Ideally, auto-tuning approaches should be capable of undertaking this task in an efficient manner for a new HPC system and new characteristics of the input data by applying suitable analytic models and program transformations.In this article, we discuss a performance prediction methodology for multi-core cluster applications, which can assist this selection process by significantly reducing the selection effort compared to in-depth runtime tests. The methodology proposed is an extension of an analytical performance prediction model for shared-memory applications introduced in our previous work. Our methodology is based on the execution-cache-memory (ECM) performance model and estimations of intra-node and inter-node communication costs, which we apply to numerical solution methods for ordinary differential equations (ODEs). In particular, we investigate whether it is possible to obtain accurate performance predictions for hybrid MPI/OpenMP implementation variants in order to support the variant selection. We demonstrate that our approach is able to reliably select a set of efficient variants for a given configuration (ODE system, solver and hardware platform) and, thus, to narrow down the search space for possible later empirical tuning.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: variant selection; ODE; auto-tuning; MPI; performance prediction; ECM model; distributed-memory
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik II > Lehrstuhl Angewandte Informatik II - Univ.-Prof. Dr. Thomas Rauber
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik II
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 23 Okt 2020 10:26
Letzte Änderung: 23 Okt 2020 10:26
URI: https://eref.uni-bayreuth.de/id/eprint/57922