Title data
Zhumagulov, Yaroslav V. ; Vagov, Alexei ; Gulevich, Dmitry R. ; Faria Junior, Paulo E. ; Perebeinos, Vasili:
Trion induced photoluminescence of a doped MoS₂ monolayer.
In: The Journal of Chemical Physics.
Vol. 153
(2020)
Issue 4
.
- 044132.
ISSN 0021-9606
DOI: https://doi.org/10.1063/5.0012971
Abstract in another language
We demonstrate that the temperature and doping dependencies of the photoluminescence (PL) spectra of a doped MoS2 monolayer have several peculiar characteristics defined by the trion radiative decay. While only zero-momentum exciton states are coupled to light, radiative recombination of non-zero momentum trions is also allowed. This leads to an asymmetric broadening of the trion spectral peak and redshift of the emitted light with increasing temperature. The lowest energy trion state is dark, which is manifested by the sharply non-monotonic temperature dependence of the PL intensity. Our calculations combine the Dirac model for the single-particle states, with parameters obtained from the first-principles calculations, and the direct solution of the three-particle problem within the Tamm–Dancoff approximation. The numerical results are well captured by a simple model that yields analytical expressions for the temperature dependencies of the PL spectra.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Theoretical Physics III Faculties Faculties > Faculty of Mathematics, Physics und Computer Science Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 530 Physics |
Date Deposited: | 15 Feb 2021 13:29 |
Last Modified: | 06 Jul 2023 12:21 |
URI: | https://eref.uni-bayreuth.de/id/eprint/63075 |