Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Quantifying spatiotemporal gradient formation in early Caenorhabditis elegans embryos with lightsheet microscopy

Title data

Benelli, Rebecca ; Struntz, Philipp ; Hofmann, Dirk ; Weiss, Matthias:
Quantifying spatiotemporal gradient formation in early Caenorhabditis elegans embryos with lightsheet microscopy.
In: Journal of Physics D. Vol. 53 (2020) Issue 29 . - 295401.
ISSN 1361-6463
DOI: https://doi.org/10.1088/1361-6463/ab8597

Abstract in another language

Major steps in embryonic development, e.g. body axes formation or asymmetric cell divisions, rely on symmetry-breaking events and gradient formation. Using three-dimensional time-resolved lightsheet microscopy, we have studied a prototypical example for self-organized gradient formation in the model organism Caenorhabditis elegans. In particular, we have monitored in detail the formation of a concentration and mobility gradient of PIE-1 proteins as well as the partitioning behavior of vital organelles prior to the first, asymmetric cell division. Our data confirm the emergence of a concentration gradient of PIE-1 along the embryo’s anterior–posterior (AP) axis but they also reveal a previously unseen depletion zone near to the cell cortex that is not present for MEX-5 proteins. Time-resolved spatial diffusion maps, acquired with SPIM-FCS, highlight the successive emergence of a mobility gradient of PIE-1 along the AP axis and suggest an almost linear decrease of fast diffusing PIE-1 proteins along the AP axis. Quantifying the subordinated dissemination of vital organelles prior to the first cell division, i.e. gradient formation on larger length scales, we find a significant asymmetry in the partitioning of the endoplasmic reticulum and mitochondria to the anterior and posterior part of the cell, respectively. Altogether, our spatiotemporally resolved data indicate that current one-dimensional model descriptions for gradient formation during C. elegans embryogenesis, i.e. a mere projection to the AP axis, might need an extension to a full three-dimensional description. Our data also advocate the use of lightsheet microscopy techniques to capture the actual three-dimensional nature of embryonic self-organization events.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics I - Physics of Living Matter
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics I - Physics of Living Matter > Chair Experimental Physics I - Physics of Living Matter - Univ.-Prof. Dr. Matthias Weiss
Profile Fields > Advanced Fields > Molecular Biosciences
Profile Fields > Advanced Fields > Nonlinear Dynamics
Profile Fields
Profile Fields > Advanced Fields
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 530 Physics
500 Science > 570 Life sciences, biology
Date Deposited: 23 Feb 2021 12:37
Last Modified: 24 Jan 2023 06:59
URI: https://eref.uni-bayreuth.de/id/eprint/63346