## Title data

Grüne, Lars:

**On input-to-state stabilizability of semilinear control systems.**

*In:* Beghi, Alessandro
(ed.):
Mathematical theory of networks and systems : Proceedings of the MTNS 98 Symposium held in Padova, Italy, July 1998. -
Padova
: Il Poligrafo
,
1998
. - pp. 181-184

ISBN 88-7115-117-8

## Related URLs

## Abstract in another language

In this paper we investigate the robustness of state feedback stabilized semilinear control systems subject to inhomogeneous perturbations in terms of input-to-state stability. In particular we are interested in the robustness of an optimal control based exponentially stabilizing discontinuous sampled discrete feedback, which is known to exist whenever the system under consideration is asymptotically null controllable. For this purpose we introduce a robustness condition that will turn out to be equivalent to a suitable input-to-state stability formulation. Validating this condition for the optimal control based feedback using a suitable Lyapunov function we obtain an equivalence between (open loop) asymptotic null controllability and robust input-to-state (state feedback) stabilizability.

## Further data

Item Type: | Article in a book |
---|---|

Refereed: | Yes |

Institutions of the University: | Faculties Faculties > Faculty of Mathematics, Physics und Computer Science Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics V (Applied Mathematics) Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics V (Applied Mathematics) > Chair Mathematics V (Applied Mathematics) - Univ.-Prof. Dr. Lars Grüne |

Result of work at the UBT: | No |

DDC Subjects: | 500 Science 500 Science > 510 Mathematics |

Date Deposited: | 24 Feb 2021 09:30 |

Last Modified: | 06 May 2021 07:41 |

URI: | https://eref.uni-bayreuth.de/id/eprint/63365 |