Titelangaben
Dang, Hai ; Buschek, Daniel:
GestureMap : Supporting Visual Analytics and Quantitative Analysis of Motion Elicitation Data by Learning 2D Embeddings.
2021
Veranstaltung: CHI Conference on Human Factors in Computing Systems
, 08.05.2021 - 13.05.2021
, online (originally: Yokohama, Japan).
(Veranstaltungsbeitrag: Kongress/Konferenz/Symposium/Tagung
,
Paper
)
DOI: https://doi.org/10.1145/3411764.3445765
Weitere URLs
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID AI Tools - Continuous Interaction with Computational Intelligence Tools Ohne Angabe |
---|
Zugehörige Forschungsdaten
https://osf.io/dzn5g/Abstract
This paper presents GestureMap, a visual analytics tool for gesture elicitation which directly visualises the space of gestures. Concretely, a Variational Autoencoder embeds gestures recorded as 3D skeletons on an interactive 2D map. GestureMap further integrates three computational capabilities to connect exploration to quantitative measures: Leveraging DTW Barycenter Averaging (DBA), we compute average gestures to 1) represent gesture groups at a glance; 2) compute a new consensus measure (variance around average gesture); and 3) cluster gestures with k-means. We evaluate GestureMap and its concepts with eight experts and an in-depth analysis of published data. Our findings show how GestureMap facilitates exploring large datasets and helps researchers to gain a visual understanding of elicited gesture spaces. It further opens new directions, such as comparing elicitations across studies. We discuss implications for elicitation studies and research, and opportunities to extend our approach to additional tasks in gesture elicitation.
Weitere Angaben
Publikationsform: | Veranstaltungsbeitrag (Paper) |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Gesture elicitation; dimensionality reduction; deep learning; visual analytics |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik |
Eingestellt am: | 27 Mai 2021 06:20 |
Letzte Änderung: | 11 Feb 2022 11:19 |
URI: | https://eref.uni-bayreuth.de/id/eprint/64581 |