Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

GestureMap : Supporting Visual Analytics and Quantitative Analysis of Motion Elicitation Data by Learning 2D Embeddings

Titelangaben

Dang, Hai ; Buschek, Daniel:
GestureMap : Supporting Visual Analytics and Quantitative Analysis of Motion Elicitation Data by Learning 2D Embeddings.
2021
Veranstaltung: CHI Conference on Human Factors in Computing Systems , 08.05.2021 - 13.05.2021 , online (originally: Yokohama, Japan).
(Veranstaltungsbeitrag: Kongress/Konferenz/Symposium/Tagung , Paper )
DOI: https://doi.org/10.1145/3411764.3445765

Weitere URLs

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
AI Tools - Continuous Interaction with Computational Intelligence Tools
Ohne Angabe

Zugehörige Forschungsdaten

https://osf.io/dzn5g/

Abstract

This paper presents GestureMap, a visual analytics tool for gesture elicitation which directly visualises the space of gestures. Concretely, a Variational Autoencoder embeds gestures recorded as 3D skeletons on an interactive 2D map. GestureMap further integrates three computational capabilities to connect exploration to quantitative measures: Leveraging DTW Barycenter Averaging (DBA), we compute average gestures to 1) represent gesture groups at a glance; 2) compute a new consensus measure (variance around average gesture); and 3) cluster gestures with k-means. We evaluate GestureMap and its concepts with eight experts and an in-depth analysis of published data. Our findings show how GestureMap facilitates exploring large datasets and helps researchers to gain a visual understanding of elicited gesture spaces. It further opens new directions, such as comparing elicitations across studies. We discuss implications for elicitation studies and research, and opportunities to extend our approach to additional tasks in gesture elicitation.

Weitere Angaben

Publikationsform: Veranstaltungsbeitrag (Paper)
Begutachteter Beitrag: Ja
Keywords: Gesture elicitation; dimensionality reduction; deep learning; visual analytics
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 27 Mai 2021 06:20
Letzte Änderung: 11 Feb 2022 11:19
URI: https://eref.uni-bayreuth.de/id/eprint/64581