Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Unscrambling exit site patterns on the endoplasmic reticulum as a quenched demixing process

Titelangaben

Speckner, Konstantin ; Stadler, Lorenz ; Weiss, Matthias:
Unscrambling exit site patterns on the endoplasmic reticulum as a quenched demixing process.
In: Biophysical Journal. Bd. 120 (2021) Heft 12 . - S. 2532-2542.
ISSN 1542-0086
DOI: https://doi.org/10.1016/j.bpj.2021.04.023

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

The endoplasmic reticulum (ER) is a vital organelle in mammalian cells with a complex morphology. Consisting of sheet-like cisternae in the cell center, the peripheral ER forms a vast tubular network on which a dispersed pattern of a few hundred specialized domains (ER exit sites (ERESs)) is maintained. Molecular details of cargo sorting and vesicle formation at individual ERESs, fueling the early secretory pathway, have been studied in some detail. The emergence of spatially extended ERES patterns, however, has remained poorly understood. Here, we show that these patterns are determined by the underlying ER morphology, suggesting ERESs to emerge from a demixing process that is quenched by the ER network topology. In particular, we observed fewer but larger ERESs when transforming the ER network to more sheet-like morphologies. In contrast, little to no changes with respect to native ERES patterns were observed when fragmenting the ER, indicating that hampering the diffusion-mediated coarse graining of domains is key for native ERES patterns. Model simulations support the notion of effective diffusion barriers impeding the coarse graining and maturation of ERES patterns. We speculate that tuning a simple demixing mechanism by the ER topology allows for a robust but flexible adaption of ERES patterns, ensuring a properly working early secretory pathway in a variety of conditions.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Experimentalphysik I - Physik lebender Materie
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Experimentalphysik I - Physik lebender Materie > Lehrstuhl Experimentalphysik I - Physik lebender Materie - Univ.-Prof. Dr. Matthias Weiss
Profilfelder > Advanced Fields > Molekulare Biowissenschaften
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Profilfelder
Profilfelder > Advanced Fields
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
Eingestellt am: 17 Jun 2021 06:48
Letzte Änderung: 25 Apr 2022 13:20
URI: https://eref.uni-bayreuth.de/id/eprint/65931