Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Hierarchical Superstructures by Combining Crystallization-Driven and Molecular Self-Assembly

Title data

Frank, Andreas ; Hils, Christian ; Weber, Melina ; Kreger, Klaus ; Schmalz, Holger ; Schmidt, Hans-Werner:
Hierarchical Superstructures by Combining Crystallization-Driven and Molecular Self-Assembly.
In: Angewandte Chemie International Edition. Vol. 60 (2021) Issue 40 . - pp. 21767-21771.
ISSN 1521-3773
DOI: https://doi.org/10.1002/anie.202105787

Official URL: Volltext

Project information

Project title:
Project's official title
Project's id
SFB 840 - Von partikulären Nanosystemen zur Mesotechnologie
A2
SFB 840 - Von partikulären Nanosystemen zur Mesotechnologie
B8

Project financing: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Deutsche Forschungsgemeinschaft

Abstract in another language

Combining the unique corona structure of worm-like patchy micelles immobilized on a polymer fiber with the molecular self-assembly of 1,3,5-benzenetricarboxamides (BTAs) leads to hierarchical superstructures with a fir-tree-like morphology. For this purpose, worm-like patchy micelles bearing pendant, functional tertiary amino groups in one of the corona patches were prepared by crystallization-driven self-assembly and immobilized on a supporting polystyrene fiber by coaxial electrospinning. The obtained patchy fibers were then immersed in an aqueous solution of a tertiary amino-functionalized BTA to induce patch-mediated molecular self-assembly to well-defined fir-tree-like superstructures upon solvent evaporation. Interestingly, defined superstructures are obtained only if the pendant functional groups in the surface patches match with the peripheral substituents of the BTA, which is attributed to a local increase in BTA concentration at the polymer fibers’ surface.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: crystallization-driven self-assembly; hierarchical superstructures; molecular self-assembly; patchy polymer fibers; supramolecular structures
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I > Chair Macromolecular Chemistry I - Univ.-Prof. Dr. Hans-Werner Schmidt
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry II
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Polymer and Colloid Science
Research Institutions
Research Institutions > Affiliated Institutes
Research Institutions > Affiliated Institutes > Bavarian Polymer Institute (BPI)
Research Institutions > Collaborative Research Centers, Research Unit
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie > SFB 840 - TP A 2
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie > SFB 840 - TP B 8
Graduate Schools
Graduate Schools > University of Bayreuth Graduate School
Graduate Schools > Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT)
Graduate Schools > Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT) > Polymer Science
Graduate Schools > Elite Network Bavaria
Graduate Schools > Elite Network Bavaria > Macromolecular Science
Result of work at the UBT: Yes
DDC Subjects: 500 Science
500 Science > 540 Chemistry
Date Deposited: 02 Jul 2021 09:59
Last Modified: 10 Nov 2021 08:12
URI: https://eref.uni-bayreuth.de/id/eprint/66405