Title data
Friberg, Anders ; Thumann, Sybille ; Hennig, Janosch ; Zou, Peijian ; Nössner, Elfriede ; Ling, Paul D. ; Sattler, Michael ; Kempkes, Bettina:
The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation.
In: PLoS Pathogens.
Vol. 11
(2015)
Issue 5
.
- e1004910.
ISSN 1553-7374
DOI: https://doi.org/10.1371/journal.ppat.1004910
Abstract in another language
Epstein-Barr virus (EBV) is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2) is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END) domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry IV - Biophysical Chemistry > Chair Biochemistry IV - Biophysical Chemistry - Univ.-Prof. Dr. Janosch Hennig Faculties Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry IV - Biophysical Chemistry Research Institutions > Central research institutes > Nordbayerisches Zentrum für NMR-Spektroskopie - NMR-Zentrum Research Institutions Research Institutions > Central research institutes |
Result of work at the UBT: | No |
DDC Subjects: | 500 Science > 540 Chemistry 500 Science > 570 Life sciences, biology |
Date Deposited: | 07 Oct 2021 13:07 |
Last Modified: | 21 Nov 2024 14:19 |
URI: | https://eref.uni-bayreuth.de/id/eprint/67241 |