Title data
James, Martin ; Suchla, Dominik A. ; Dunkel, Jörn ; Wilczek, Michael:
Emergence and melting of active vortex crystals.
In: Nature Communications.
Vol. 12
(2021)
.
- 5630.
ISSN 2041-1723
DOI: https://doi.org/10.1038/s41467-021-25545-z
Abstract in another language
Melting of two-dimensional (2D) equilibrium crystals, from superconducting vortex lattices to colloidal structures, is a complex phenomenon characterized by the sequential loss of positional and orientational order. Whereas melting processes in passive systems are typically triggered by external heat injection, active matter crystals can self-assemble and melt into an active fluid by virtue of their intrinsic motility and inherent non-equilibrium stresses. Emergent crystal-like order has been observed in recent experiments on suspensions of swimming sperm cells, fast-moving bacteria, Janus colloids, and in embryonic tissues. Yet, despite recent progress in the theoretical description of such systems, the non-equilibrium physics of active crystallization and melting processes is not well understood. Here, we establish the emergence and investigate the melting of self-organized vortex crystals in 2D active fluids using an experimentally validated generalized Toner-Tu theory. Performing hydrodynamic simulations at an unprecedented scale, we identify two distinctly different melting scenarios: a hysteretic discontinuous phase transition and melting through an intermediary hexatic phase, both of which can be controlled by self-propulsion and active stresses. Our analysis further reveals intriguing transient features of active vortex crystals including meta-stable superstructures of opposite spin polarity. Generally, these results highlight the differences and similarities between crystalline phases in active fluids and their equilibrium counterparts.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Theoretical Physics I > Chair Theoretical Physics I - Univ.-Prof. Dr. Michael Wilczek Profile Fields > Advanced Fields > Nonlinear Dynamics Faculties Faculties > Faculty of Mathematics, Physics und Computer Science Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Theoretical Physics I Profile Fields Profile Fields > Advanced Fields |
Result of work at the UBT: | No |
DDC Subjects: | 500 Science > 530 Physics |
Date Deposited: | 18 Feb 2022 08:28 |
Last Modified: | 09 Jan 2025 10:08 |
URI: | https://eref.uni-bayreuth.de/id/eprint/67562 |