Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Enhancing the Mechanical Strength of Electrolyte-Supported Solid Oxide Cells with Thin and Dense Doped-Ceria Interlayers

Titelangaben

Riegraf, Matthias ; Bombarda, Ilaria ; Dömling, Ferdinand ; Liensdorf, Tom ; Sitzmann, Carolin ; Langhof, Nico ; Schafföner, Stefan ; Han, Feng ; Sata, Noriko ; Geipel, Christian ; Walter, Christian ; Costa, Rémi:
Enhancing the Mechanical Strength of Electrolyte-Supported Solid Oxide Cells with Thin and Dense Doped-Ceria Interlayers.
In: ACS Applied Materials & Interfaces. Bd. 13 (2021) Heft 42 . - S. 49879-49889.
ISSN 1944-8252
DOI: https://doi.org/10.1021/acsami.1c13899

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Kostenoptimierter Stack und verbessertes Offgrid-System (KOSOS)
03ETB005

Projektfinanzierung: Bundesministerium für Wirtschaft und Energie

Abstract

The penetration of fuel cells and electrolyzers in energy systems calls for their scale-up to the gigawatt (GW) level. High temperature solid oxide cells (SOC) offer unrivaled efficiencies in both electrolysis and fuel cell operation. However, they are made of ceramics and are brittle by nature. Consequently, a high mechanical strength to avoid failure during stacking is essential to achieve a high manufacturing yield. Here, we show that without changing the materials of the state-of-the-art cells, thin and dense ceria interlayers enable comparable power densities and durability in fuel cell operation. The sole tuning of the morphology and processing of the interlayers reduce the residual stress in the cell significantly which increases its mechanical strength by up to 78%. These results promise performance gains of similar magnitude by enabling a substantial decrease of the electrolyte thickness while maintaining robustness. This stress engineering approach presents a way to increase the volumetric power density and material efficiency of SOC systems.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Keramische Werkstoffe > Lehrstuhl Keramische Werkstoffe - Univ.-Prof. Dr.-Ing. Stefan Schafföner
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Keramische Werkstoffe
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 03 Dec 2021 08:37
Letzte Änderung: 20 Jan 2022 14:20
URI: https://eref.uni-bayreuth.de/id/eprint/67994