Title data
Dietler, Julia ; Gelfert, Renate ; Kaiser, Jennifer ; Borin, Veniamin ; Renzl, Christian ; Pilsl, Sebastian ; Ranzani, Américo Tavares ; García de Funtes, Andrés ; Gleichmann, Tobias ; Diensthuber, Ralph P. ; Weyand, Michael ; Mayer, Günter ; Schapiro, Igor ; Möglich, Andreas:
Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine.
In: Nature Communications.
Vol. 13
(2022)
.
- 2618.
ISSN 2041-1723
DOI: https://doi.org/10.1038/s41467-022-30252-4
Project information
Project title: |
Project's official title Project's id Open Access Publizieren No information |
---|
Abstract in another language
In nature as in biotechnology, light-oxygen-voltage photoreceptors perceive blue light to elicit spatiotemporally defined cellular responses. Photon absorption drives thioadduct formation between a conserved cysteine and the flavin chromophore. An equally conserved, proximal glutamine processes the resultant flavin protonation into downstream hydrogen-bond rearrangements. Here, we report that this glutamine, long deemed essential, is generally dispensable. In its absence, several light-oxygen-voltage receptors invariably retained productive, if often attenuated, signaling responses. Structures of a light-oxygen-voltage paradigm at around 1 Å resolution revealed highly similar light-induced conformational changes, irrespective of whether the glutamine is present. Naturally occurring, glutamine-deficient light-oxygen-voltage receptors likely serve as bona fide photoreceptors, as we showcase for a diguanylate cyclase. We propose that without the glutamine, water molecules transiently approach the chromophore and thus propagate flavin protonation downstream. Signaling without glutamine appears intrinsic to light-oxygen-voltage receptors, which pertains to biotechnological applications and suggests evolutionary descendance from redox-active flavoproteins.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Additional notes: | Number: 1 Publisher: Nature Publishing Group |
Keywords: | Photobiology; Signal processing; X-ray crystallography; Mechanism of action |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry > Chair Biochemistry - Univ.-Prof. Dr. Andreas Möglich Faculties Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 570 Life sciences, biology |
Date Deposited: | 11 Jul 2022 06:51 |
Last Modified: | 09 Aug 2023 06:24 |
URI: | https://eref.uni-bayreuth.de/id/eprint/70472 |