Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Suggestion Lists vs. Continuous Generation : Interaction Design for Writing with Generative Models on Mobile Devices Affect Text Length, Wording and Perceived Authorship

Titelangaben

Lehmann, Florian ; Markert, Niklas ; Dang, Hai ; Buschek, Daniel:
Suggestion Lists vs. Continuous Generation : Interaction Design for Writing with Generative Models on Mobile Devices Affect Text Length, Wording and Perceived Authorship.
In: Mensch und Computer 2022 : Tagungsband. - New York : ACM , 2022 . - S. 1-19
DOI: https://doi.org/10.1145/3543758.3543947

Weitere URLs

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
AI Tools - Continuous Interaction with Computational Intelligence Tools
Ohne Angabe

Projektfinanzierung: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst

Abstract

Neural language models have the potential to support human writing. However, questions remain on their integration and influence on writing and output. To address this, we designed and compared two user interfaces for writing with AI on mobile devices, which manipulate levels of initiative and control: 1) Writing with continuously generated text, the AI adds text word-by-word and user steers. 2) Writing with suggestions, the AI suggests phrases and user selects from a list. In a supervised online study (N=18), participants used these prototypes and a baseline without AI. We collected touch interactions, ratings on inspiration and authorship, and interview data. With AI suggestions, people wrote less actively, yet felt they were the author. Continuously generated text reduced this perceived authorship, yet increased editing behavior. In both designs, AI increased text length and was perceived to influence wording. Our findings add new empirical evidence on the impact of UI design decisions on user experience and output with co-creative systems.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: mobile text entry; typing; language model; continuous generations;
text suggestions; initiative; control; roles; authorship; deep learning;
neural network; dataset
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 05 Aug 2022 07:25
Letzte Änderung: 05 Aug 2022 07:25
URI: https://eref.uni-bayreuth.de/id/eprint/71371