Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Single-Pixel Fluorescence Spectroscopy Using Near-Field Dispersion for Single-Photon Counting and Single-Shot Acquisition

Titelangaben

Tiedeck, Sofie ; Heindl, Moritz ; Kramlinger, Peter ; Naas, Julia ; Brütting, Fabian ; Kirkwood, Nicholas ; Mulvaney, Paul ; Herink, Georg:
Single-Pixel Fluorescence Spectroscopy Using Near-Field Dispersion for Single-Photon Counting and Single-Shot Acquisition.
In: ACS Photonics. Bd. 9 (2022) Heft 9 . - S. 2931-2937.
ISSN 2330-4022
DOI: https://doi.org/10.1021/acsphotonics.2c00710

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projektfinanzierung: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Project 403711541. J.N. is supported by the Austrian Science Fund (FWF) Project Number F78 to Arndt von Haeseler. P.M. and N.K. acknowledge support through ARC Grant CE170100026.

Abstract

Time-resolved sensing of fluorescence quanta provides exceptionally versatile information–including access to nanoscopic structure, chemical environment and nonclassical behavior of quantum emitters. Combined spectro-temporal information is typically obtained using spatial dispersion with photoelectron imaging such as streak-cameras or position-sensitive counting and, alternatively, sequential filtering with single-pixel detectors. However, such schemes require complex, expensive and low-sensitivity detectors or rely on scanning acquisition. Here, we demonstrate a single-pixel implementation of fluorescence emission spectroscopy entirely in the temporal domain compatible with (a) time-correlated single-photon counting (TCSPC) and (b) high-speed single-shot detection. Harnessing the near-field regime of the Time-Stretch Dispersive Fourier Transformation (TS-DFT), we encode spectral information via chromatic dispersion into temporal signals, and we demonstrate the retrieval of entwined information via a direct deconvolution using prior knowledge. Addressing high optical throughput for extended emitters, we introduce a high-bandwidth graded-index multimode fiber for TS-DFT. As proof-of-concept, we present rapid single-shot optical thermometry based on quantum-dot luminescence. Given its high speed, efficiency, and simplicity, we foresee broad applications for fast hyperspectral confocal fluorescence microscopy, low-light sensing, and high-throughput spectral screening.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Juniorprofessur Experimentalphysik VIII - Ultraschnelle Dynamik > Juniorprofessur Experimentalphysik VIII - Ultraschnelle Dynamik - Juniorprof. Dr. Georg Herink
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Juniorprofessur Experimentalphysik VIII - Ultraschnelle Dynamik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 30 Aug 2022 05:56
Letzte Änderung: 19 Okt 2022 13:53
URI: https://eref.uni-bayreuth.de/id/eprint/71701