Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Towards a robust criterion of anomalous diffusion

Titelangaben

Sposini, Vittoria ; Krapf, Diego ; Marinari, Enzo ; Sunyer, Raimon ; Ritort, Felix ; Taheri, Fereydoon ; Selhuber-Unkel, Christine ; Benelli, Rebecca ; Weiss, Matthias ; Metzler, Ralf ; Oshanin, Gleb:
Towards a robust criterion of anomalous diffusion.
In: Communications Physics. Bd. 5 (2022) . - 305.
ISSN 2399-3650
DOI: https://doi.org/10.1038/s42005-022-01079-8

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Experimentalphysik I - Physik lebender Materie > Lehrstuhl Experimentalphysik I - Physik lebender Materie - Univ.-Prof. Dr. Matthias Weiss
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Experimentalphysik I - Physik lebender Materie
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
Eingestellt am: 06 Dec 2022 06:08
Letzte Änderung: 26 Sep 2023 09:17
URI: https://eref.uni-bayreuth.de/id/eprint/72959