## Title data

Freixas, Josep ; Kurz, Sascha:

**On minimum integer representations of weighted games.**

*In:* Mathematical Social Sciences.
Vol. 67
(2014)
.
- pp. 9-22.

ISSN 0165-4896

DOI: https://doi.org/10.1016/j.mathsocsci.2013.10.005

## Abstract in another language

We study minimum integer representations of weighted games, i.e. representations where the weights are integers and every other integer representation is at least as large in each component. Those minimum integer representations, if they exist at all, are linked with some solution concepts in game theory. Closing existing gaps in the literature, we prove that each weighted game with two types of voters admits a (unique) minimum integer representation, and give new examples for more than two types of voters without a minimum integer representation. We characterize the possible weights in minimum integer representations and give examples for t ≥ 4 types of voters without a minimum integer representation preserving types, i.e. where we additionally require that the weights are equal within equivalence classes of voters.