Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries

Titelangaben

Russell, Carina S. ; Mostafavi, Azadeh ; Quint, Jacob P. ; Panayi, Adriana C. ; Baldino, Kodi ; Williams, Tyrell J. ; Daubendiek, Jocelyn G. ; Sánchez, Victor Hugo ; Bonick, Zack ; Trujillo-Miranda, Mairon ; Shin, Su Ryon ; Pourquie, Olivier ; Salehi, Sahar ; Sinha, Indranil ; Tamayol, Ali:
In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries.
In: ACS Applied Bio Materials. Bd. 3 (2020) Heft 3 . - S. 1568-1579.
ISSN 2576-6422
DOI: https://doi.org/10.1021/acsabm.9b01176

Abstract

Reconstructive surgery remains inadequate for the treatment of volumetric muscle loss (VML). The geometry of skeletal muscle defects in VML injuries varies on a case-by-case basis. Three-dimensional (3D) printing has emerged as one strategy that enables the fabrication of scaffolds that match the geometry of the defect site. However, the time and facilities needed for imaging the defect site, processing to render computer models, and printing a suitable scaffold prevent immediate reconstructive interventions post-traumatic injuries. In addition, the proper implantation of hydrogel-based scaffolds, which have generated promising results in vitro, is a major challenge. To overcome these challenges, a paradigm is proposed in which gelatin-based hydrogels are printed directly into the defect area and cross-linked in situ. The adhesiveness of the bioink hydrogel to the skeletal muscles was assessed ex vivo. The suitability of the in situ printed bioink for the delivery of cells is successfully assessed in vitro. Acellular scaffolds are directly printed into the defect site of mice with VML injury, exhibiting proper adhesion to the surrounding tissue and promoting remnant skeletal muscle hypertrophy. The developed handheld printer capable of 3D in situ printing of adhesive scaffolds is a paradigm shift in the rapid yet precise filling of complex skeletal muscle tissue defects.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: in situ printing; bioinks; adhesive hydrogels; gelatin methacryloyl; skeletal muscle injury
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 09 Mär 2023 12:58
Letzte Änderung: 09 Mär 2023 12:58
URI: https://eref.uni-bayreuth.de/id/eprint/74161