Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

The Effect of Titanium Dioxide (TiO₂) Nanoparticles on Hydroxyapatite (HA)/TiO₂ Composite Coating Fabricated by Electrophoretic Deposition (EPD)

Title data

Amirnejad, M. ; Afshar, A. ; Salehi, Sahar:
The Effect of Titanium Dioxide (TiO₂) Nanoparticles on Hydroxyapatite (HA)/TiO₂ Composite Coating Fabricated by Electrophoretic Deposition (EPD).
In: Journal of Materials Engineering and Performance. Vol. 27 (2018) Issue 5 . - pp. 2338-2344.
ISSN 1544-1024
DOI: https://doi.org/10.1007/s11665-018-3342-6

Abstract in another language

Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating’s dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Engineering Science > Chair Biomaterials
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences > 610 Medicine and health
600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 09 Mar 2023 13:51
Last Modified: 09 Mar 2023 13:51
URI: https://eref.uni-bayreuth.de/id/eprint/74167