Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

The tensorflow partitioning and scheduling problem: it's the critical path!

Titelangaben

Mayer, Ruben ; Mayer, Christian ; Laich, Larissa:
The tensorflow partitioning and scheduling problem: it's the critical path!
In: Proceedings of the 1st Workshop on Distributed Infrastructures for Deep Learning. - New York : Association for Computing Machinery , 2017 . - S. 1-6
ISBN 978-1-4503-5169-0
DOI: https://doi.org/10.1145/3154842.3154843

Abstract

State-of-the-art data flow systems such as TensorFlow impose iterative calculations on large graphs that need to be partitioned on heterogeneous devices such as CPUs, GPUs, and TPUs. However, partitioning can not be viewed in isolation. Each device has to select the next graph vertex to be executed, i.e., perform local scheduling decisions. Both problems, partitioning and scheduling, are NP-complete by themselves but have to be solved in combination in order to minimize overall execution time of an iteration. In this paper, we propose several heuristic strategies to solve the partitioning and scheduling problem in TensorFlow. We simulate the performance of the proposed strategies in heterogeneous environments with communication-intensive workloads that are common to TensorFlow. Our findings indicate that the best partitioning and scheduling heuristics are those that focus on minimizing the execution time of the critical path in the graph. Those strategies provide a speed-up of up to 4 times in comparison to strategies that are agnostic to the critical path, such as hash-based partitioning and FIFO scheduling.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Data Systems
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Data Systems > Lehrstuhl Data Systems - Univ.-Prof. Dr. Ruben Mayer
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 26 Apr 2023 08:56
Letzte Änderung: 05 Feb 2024 07:44
URI: https://eref.uni-bayreuth.de/id/eprint/76027