Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Scalable deep learning on distributed infrastructures : Challenges, techniques, and tools

Titelangaben

Mayer, Ruben ; Jacobsen, Hans-Arno:
Scalable deep learning on distributed infrastructures : Challenges, techniques, and tools.
In: ACM Computing Surveys. Bd. 53 (2021) Heft 1 . - 3.
ISSN 1557-7341
DOI: https://doi.org/10.1145/3363554

Abstract

Deep Learning (DL) has had an immense success in the recent past, leading to state-of-the-art results in various domains, such as image recognition and natural language processing. One of the reasons for this success is the increasing size of DL models and the proliferation of vast amounts of training data being available. To keep on improving the performance of DL, increasing the scalability of DL systems is necessary. In this survey, we perform a broad and thorough investigation on challenges, techniques and tools for scalable DL on distributed infrastructures. This incorporates infrastructures for DL, methods for parallel DL training, multi-tenant resource scheduling, and the management of training and model data. Further, we analyze and compare 11 current open-source DL frameworks and tools and investigate which of the techniques are commonly implemented in practice. Finally, we highlight future research trends in DL systems that deserve further research.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Data Systems
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Data Systems > Lehrstuhl Data Systems - Univ.-Prof. Dr. Ruben Mayer
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 24 Apr 2023 11:54
Letzte Änderung: 05 Feb 2024 07:25
URI: https://eref.uni-bayreuth.de/id/eprint/76035