Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Unexpectedly large energy variations from dopant interactions in ferroelectric HfO₂ from high-throughput ab initio calculations

Title data

Falkowski, Max ; Künneth, Christopher ; Materlik, Robin ; Kersch, Alfred:
Unexpectedly large energy variations from dopant interactions in ferroelectric HfO₂ from high-throughput ab initio calculations.
In: npj Computational Materials. Vol. 4 (2018) Issue 1 . - 73.
ISSN 2057-3960
DOI: https://doi.org/10.1038/s41524-018-0133-4

Abstract in another language

Insight into the origin of process-related properties like small-scale inhomogeneities is key for material optimization. Here, we analyze DFT calculations of randomly doped HfO2 structures with Si, La, and VO and relate them to the kind of production process. Total energies of the relevant ferroelectric Pbc21 phase are compared with the competing crystallographic phases under the influence of the arising local inhomogeneities in a coarse-grained approach. The interaction among dopants adds to the statistical effect from the random positioning of the dopants. In anneals after atomic layer or chemical solution deposition processes, which are short compared to ceramic process tempering, the large energy variations remain because the dopants do not diffuse. Since the energy difference is the criterion for the phase stability, the large variation suggests the possibility of nanoregions and diffuse phase transitions because these local doping effects may move the system over the paraelectric-ferroelectric phase boundary.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Engineering Science > Juniorprofessur Computational Materials Science > Juniorprofessur Computational Materials Science - Juniorprof. Dr. Christopher Künneth
Result of work at the UBT: No
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 05 May 2023 08:51
Last Modified: 05 May 2023 08:51
URI: https://eref.uni-bayreuth.de/id/eprint/76157