Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Automatic Label-free Detection of Breast Cancer Using Nonlinear Multimodal Imaging and the Convolutional Neural Network ResNet50

Titelangaben

Ali, Nairveen ; Quansah, Elsie ; Köhler, Katarina ; Meyer, Tobias ; Schmitt, Michael ; Popp, Jürgen ; Niendorf, Axel ; Bocklitz, Thomas:
Automatic Label-free Detection of Breast Cancer Using Nonlinear Multimodal Imaging and the Convolutional Neural Network ResNet50.
In: Translational Biophotonics. Bd. 1 (2019) Heft 1-2 . - e201900003.
ISSN 2627-1850
DOI: https://doi.org/10.1002/tbio.201900003

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Breast cancer is the main cause of all female cancer deaths worldwide. Because of the lack of early symptoms, the early detection of breast cancer becomes challenging. The detection is performed by screening techniques in organized preventive examinations. A promising imaging technology that can detect bio-molecular alterations and can support the screening technologies by enhancing their low sensitivity, is nonlinear multimodal imaging. To detect these bio-molecular alterations machine learning algorithms are utilized. Our analysis starts by preprocessing the images and comparing them to the pathological diagnosis. We trained two classification models utilizing the deep convolutional neural network ResNet50. This network was either used as feature extractor or to be finetuned. Beside these two classification approaches, two data validation techniques were investigated: the leave-one-patient-out cross-validation (LOPO-CV) and the training-test validation. The best reported result of breast cancer detection was introduced by the finetuned ResNet50 network and LOPO-CV accounting to 86.23% mean-sensitivity.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: breast cancer imaging; coherent anti-Stokes Raman scattering (CARS); computer aided diagnosis; convolutional neural network; deep learning; image analysis; Nonlinear multimodal imaging; second-harmonic generation (SHG); two-photon excited fluorescence (TPEF)
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 22 Mai 2023 13:00
Letzte Änderung: 22 Mai 2023 13:00
URI: https://eref.uni-bayreuth.de/id/eprint/76269