Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Do you get what you see? Understanding molecular self-healing

Titelangaben

Geitner, Robert ; Legesse, Fisseha-Bekele ; Kuhl, Natascha ; Bocklitz, Thomas ; Zechel, Stefan ; Vitz, Jürgen ; Hager, Martin ; Schubert, Ulrich S. ; Dietzek, Benjamin ; Schmitt, Michael ; Popp, Jürgen:
Do you get what you see? Understanding molecular self-healing.
In: Chemistry : a European Journal. Bd. 24 (2018) Heft 10 . - S. 2493-2502.
ISSN 1521-3765
DOI: https://doi.org/10.1002/chem.201705836

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

The self-healing ability of self-healing materials is often analyzed via morphologic microscopy images. Here it was possible to show that morphologic information alone is not sufficient to judge the status of a self-healing process and molecular information is required as well. When comparing molecular coherent anti-Stokes Raman scattering (CARS) and morphological laser reflection images during a standard scratch healing test of an intrinsic self-healing polymer network it was found that the morphologic closing of the scratch and the molecular crosslinking of the material do not take place simultaneously. This important observation can be explained by the fact that the self-healing process of the thiol-ene based polymer network is limited by the mobility of alkene-containing compounds, which can only be monitored by molecular CARS microscopy and not via standard morphological imaging. Additionally, the recorded CARS images indicate a mechano-chemical activation of the self-healing material by the scratching/damaging process, which leads to an enhanced self-healing behavior in the vicinity of the scratch.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: CARS; kinetics; Polymers; Raman spectroscopy; Self-Healing
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 17 Mai 2023 13:37
Letzte Änderung: 17 Mai 2023 13:37
URI: https://eref.uni-bayreuth.de/id/eprint/76310