Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Systematic evaluation of the biological variance within the Raman based colorectal tissue diagnostics

Titelangaben

Vogler, Nadine ; Bocklitz, Thomas ; Salah, Firas Subhi ; Schmidt, Carsten ; Bräuer, Rolf ; Cui, Tiantian ; Mireskandari, Masoud ; Greten, Florian R. ; Schmitt, Michael ; Stallmach, Andreas ; Petersen, Iver ; Popp, Jürgen:
Systematic evaluation of the biological variance within the Raman based colorectal tissue diagnostics.
In: Journal of Biophotonics. Bd. 9 (2016) Heft 5 . - S. 533-541.
ISSN 1864-0648
DOI: https://doi.org/10.1002/jbio.201500237

Abstract

Being among the most common cancers worldwide screening and early diagnosis of colorectal cancer is of high interest for the health system, the patients and for research. Raman microspectroscopy as a label-free, non-invasive and non-destructive technique is a promising tool for an early diagnosis. However, to ensure a reliable diagnosis specially designed statistical analysis workflows are required. Several statistical approaches have been introduced leading to varying results in the overall accuracy, sensitivity and specificity. In this study a systematic evaluation of different statistical analysis approaches has been performed using a colon cancer mouse model with genotypic identical individuals. Based on the inter-individual Raman spectral variances a measure for the biological variance can be estimated. By applying a leave-one-individual-out cross-validation a clinically relevant discrimination of healthy tissue versus adenoma and carcinoma with an accuracy of 95% is shown. Furthermore, the transfer of a model from tissue to biopsy specimen is demonstrated.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 12 Mai 2023 10:13
Letzte Änderung: 12 Mai 2023 10:13
URI: https://eref.uni-bayreuth.de/id/eprint/76378