Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Data Fusion of Histological and Immunohistochemical Image Data for Breast Cancer Diagnostics using Transfer Learning

Titelangaben

Pradhan, Pranita ; Köhler, Katharina ; Guo, Shuxia ; Rosin, Olga ; Popp, Jürgen ; Niendorf, Axel ; Bocklitz, Thomas:
Data Fusion of Histological and Immunohistochemical Image Data for Breast Cancer Diagnostics using Transfer Learning.
In: Proceedings of the 10th International Conference on Pattern Recognition Applications and Methods. Volume 1. - Sétubal : SciTePress , 2021 . - S. 495-506
ISBN 978-989-758-486-2
DOI: https://doi.org/10.5220/0010225504950506

Abstract

A combination of histological and immunohistochemical tissue features can offer better breast cancer diagnosis as compared to histological tissue features alone. However, manual identification of histological and immunohistochemical tissue features for cancerous and healthy tissue requires an enormous human effort which delays the breast cancer diagnosis. In this paper, breast cancer detection using the fusion of histological (H&E) and immunohistochemical (PR, ER, Her2 and Ki-67) imaging data based on deep convolutional neural networks (DCNN) was performed. DCNNs, including the VGG network, the residual network and the inception network were comparatively studied. The three DCNNs were trained using two transfer learning strategies. In transfer learning strategy 1, a pre-trained DCNN was used to extract features from the images of five stain types. In transfer learning strategy 2, the images of the five stain types were used as inputs to a pre-trained multi-input DCNN, and the last layer of the multi-input DCNN was optimized. The results showed that data fusion of H&E and IHC imaging data could increase the mean sensitivity at least by 2% depending on the DCNN model and the transfer learning strategy. Specifically, the pretrained inception and residual networks with transfer learning strategy 1 achieved the best breast cancer detection.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: Breast Cancer; Transfer Learning; Histology; Immunohistochemistry
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 11 Mai 2023 12:44
Letzte Änderung: 11 Mai 2023 12:44
URI: https://eref.uni-bayreuth.de/id/eprint/76398