Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Comparison of functional and discrete data analysis regimes for Raman spectra

Titelangaben

Houhou, Rola ; Rösch, Petra ; Popp, Jürgen ; Bocklitz, Thomas:
Comparison of functional and discrete data analysis regimes for Raman spectra.
In: Analytical and Bioanalytical Chemistry. Bd. 413 (2021) . - S. 5633-5644.
ISSN 1618-2650
DOI: https://doi.org/10.1007/s00216-021-03360-1

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Raman spectral data are best described by mathematical functions; however, due to the spectroscopic measurement setup, only discrete points of these functions are measured. Therefore, we investigated the Raman spectral data for the first time in the functional framework. First, we approximated the Raman spectra by using B-spline basis functions. Afterwards, we applied the functional principal component analysis followed by the linear discriminant analysis (FPCA-LDA) and compared the results with those of the classical principal component analysis followed by the linear discriminant analysis (PCA-LDA). In this context, simulation and experimental Raman spectra were used. In the simulated Raman spectra, normal and abnormal spectra were used for a classification model, where the abnormal spectra were built by shifting one peak position. We showed that the mean sensitivities of the FPCA-LDA method were higher than the mean sensitivities of the PCA-LDA method, especially when the signal-to-noise ratio is low and the shift of the peak position is small. However, for a higher signal-to-noise ratio, both methods performed equally. Additionally, a slight improvement of the mean sensitivity could be shown if the FPCA-LDA method was applied to experimental Raman data.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 11 Mai 2023 11:10
Letzte Änderung: 11 Mai 2023 11:10
URI: https://eref.uni-bayreuth.de/id/eprint/76402