Title data
Houhou, Rola ; Rösch, Petra ; Popp, Jürgen ; Bocklitz, Thomas:
Comparison of functional and discrete data analysis regimes for Raman spectra.
In: Analytical and Bioanalytical Chemistry.
Vol. 413
(2021)
.
- pp. 5633-5644.
ISSN 1618-2650
DOI: https://doi.org/10.1007/s00216-021-03360-1
Abstract in another language
Raman spectral data are best described by mathematical functions; however, due to the spectroscopic measurement setup, only discrete points of these functions are measured. Therefore, we investigated the Raman spectral data for the first time in the functional framework. First, we approximated the Raman spectra by using B-spline basis functions. Afterwards, we applied the functional principal component analysis followed by the linear discriminant analysis (FPCA-LDA) and compared the results with those of the classical principal component analysis followed by the linear discriminant analysis (PCA-LDA). In this context, simulation and experimental Raman spectra were used. In the simulated Raman spectra, normal and abnormal spectra were used for a classification model, where the abnormal spectra were built by shifting one peak position. We showed that the mean sensitivities of the FPCA-LDA method were higher than the mean sensitivities of the PCA-LDA method, especially when the signal-to-noise ratio is low and the shift of the peak position is small. However, for a higher signal-to-noise ratio, both methods performed equally. Additionally, a slight improvement of the mean sensitivity could be shown if the FPCA-LDA method was applied to experimental Raman data.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Computer Science > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz |
Result of work at the UBT: | No |
DDC Subjects: | 000 Computer Science, information, general works > 004 Computer science 500 Science > 530 Physics |
Date Deposited: | 11 May 2023 11:10 |
Last Modified: | 11 May 2023 11:10 |
URI: | https://eref.uni-bayreuth.de/id/eprint/76402 |