Titelangaben
Fellner, Lea ; Kraus, Marian ; Walter, Arne ; Duschek, Frank ; Bocklitz, Thomas ; Gabbarini, Valentina ; Rossi, Riccardo ; Puleio, Alessandro ; Malizia, Andrea ; Gaudio, Pasquale:
Determination of Composition of Mixed Biological Samples Using Laser-Induced Fluorescence and Combined Classification/Regression Models.
In: The European Physical Journal Plus.
Bd. 136
(2021)
.
- 1122.
ISSN 2190-5444
DOI: https://doi.org/10.1140/epjp/s13360-021-02019-1
Abstract
Laser-induced fluorescence (LIF) provides the ability to distinguish organic materials by a fast and distant in situ analysis. When detecting the substances directly in the environment, e.g., in an aerosol cloud or on surfaces, additional fluorescence signals of other fluorophores occurring in the surrounding are expected to mix with the desired signal. We approached this problem with a simplified experimental design for an evaluation of classification algorithms. An upcoming question for enhanced identification capabilities is the case of mixed samples providing different signals from different fluorophores. For this work, mixtures of up to four common fluorophores (NADH, FAD, tryptophan and tyrosine) were measured by a dual-wavelength setup and spectrally analyzed. Classification and regression are conducted with neural networks and show an excellent performance in predicting the ratios of the selected ingredients.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 530 Physik |
Eingestellt am: | 11 Mai 2023 09:05 |
Letzte Änderung: | 11 Mai 2023 09:05 |
URI: | https://eref.uni-bayreuth.de/id/eprint/76409 |