Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Detection of multi-resistant clinical strains of E. coli with Raman spectroscopy

Titelangaben

Nakar, Amir ; Pistiki, Aikaterini ; Ryabchykov, Oleg ; Bocklitz, Thomas ; Rösch, Petra ; Popp, Jürgen:
Detection of multi-resistant clinical strains of E. coli with Raman spectroscopy.
In: Analytical and Bioanalytical Chemistry. Bd. 414 (2022) Heft 4 . - S. 1481-1492.
ISSN 1618-2650
DOI: https://doi.org/10.1007/s00216-021-03800-y

Abstract

In recent years, we have seen a steady rise in the prevalence of antibiotic-resistant bacteria. This creates many challenges in treating patients who carry these infections, as well as stopping and preventing outbreaks. Identifying these resistant bacteria is critical for treatment decisions and epidemiological studies. However, current methods for identification of resistance either require long cultivation steps or expensive reagents. Raman spectroscopy has been shown in the past to enable the rapid identification of bacterial strains from single cells and cultures. In this study, Raman spectroscopy was applied for the differentiation of resistant and sensitive strains of Escherichia coli. Our focus was on clinical multi-resistant (extended-spectrum β-lactam and carbapenem-resistant) bacteria from hospital patients. The spectra were collected using both UV resonance Raman spectroscopy in bulk and single-cell Raman microspectroscopy, without exposure to antibiotics. We found resistant strains have a higher nucleic acid/protein ratio, and used the spectra to train a machine learning model that differentiates resistant and sensitive strains. In addition, we applied a majority of voting system to both improve the accuracy of our models and make them more applicable for a clinical setting. This method could allow rapid and accurate identification of antibiotic resistant bacteria, and thus improve public health.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 11 Mai 2023 07:02
Letzte Änderung: 11 Mai 2023 07:02
URI: https://eref.uni-bayreuth.de/id/eprint/76412