Title data
Wang, Luxia ; Guo, Qinghai ; Wu, Geng ; Yu, Zhicheng ; Leon Ninin, Jose M. ; Planer-Friedrich, Britta:
Methanogens-Driven Arsenic Methylation Preceding Formation of Methylated Thioarsenates in Sulfide-Rich Hot Springs.
In: Environmental Science & Technology.
Vol. 57
(2023)
Issue 19
.
- pp. 7410-7420.
ISSN 0013-936X
DOI: https://doi.org/10.1021/acs.est.2c08814
Abstract in another language
Hot springs represent a major source of arsenic release into the environment. Speciation is typically reported to be dominated by arsenite, arsenate, and inorganic thiolated arsenates. Much less is known about the relevance and formation of methylated thioarsenates, a group with species of high mobility and toxicity. In hot spring samples taken from the Tengchong volcanic region in China, methylated thioarsenates contributed up to 13% to total arsenic. Enrichment cultures were obtained from the corresponding sediment samples and incubated to assess their capability to convert arsenite into methylated thioarsenates over time and in the presence of different microbial inhibitors. In contrast to observations in other environmental systems (e.g., paddy soils), there was no solid evidence, supporting that the sulfate-reducing bacteria contributed to the arsenic methylation. Methanosarcina, the sole genus of methanogens detected in the enrichment cultures, as well as Methanosarcina thermophila TM-1, a pure strain within the genus, did methylate arsenic. We propose that methylated thioarsenates in a typical sulfide-rich hot spring environment like Tengchong form via a combination of biotic arsenic methylation driven by thermophilic methanogens and arsenic thiolation with either geogenic sulfide or sulfide produced by sulfate-reducing bacteria.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professor Environmental Geochemistry Group Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER |
Result of work at the UBT: | No |
DDC Subjects: | 500 Science > 550 Earth sciences, geology |
Date Deposited: | 17 May 2023 09:08 |
Last Modified: | 17 May 2023 09:08 |
URI: | https://eref.uni-bayreuth.de/id/eprint/76461 |