Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Comparison of conventional and shifted excitation Raman difference spectroscopy for bacterial identification

Titelangaben

Lorenz, Björn ; Guo, Shuxia ; Raab, Christoph ; Leisching, Patrick ; Bocklitz, Thomas ; Rösch, Petra ; Popp, Jürgen:
Comparison of conventional and shifted excitation Raman difference spectroscopy for bacterial identification.
In: Journal of Raman Spectroscopy. Bd. 53 (2022) Heft 7 . - S. 1285-1292.
ISSN 1097-4555
DOI: https://doi.org/10.1002/jrs.6360

Abstract

Raman spectroscopy is an emerging tool for fast bacterial identification. However, Raman spectroscopy is depending on suitable preprocessing of the spectra, thereby background removal is a decisive step for conventional Raman spectroscopy. The background has to be estimated, which is challenging especially for high fluorescence backgrounds. Shifted excitation Raman difference spectroscopy (SERDS) eliminates the background through the experimental procedure and holds as promising approach for highly fluorescent samples. Bacterial Raman spectra might be especially complex because these spectra consist of a multitude of overlapping Raman bands from a large multiplicity of biomolecules and only subtitle differences between the species Raman spectra enable the bacterial identification. Here, we investigate the benefits of SERDS compared with conventional Raman spectroscopy specific for the study and identification of bacteria. The comparison utilizes spectra sets of four bacterial species measured with conventional Raman spectroscopy and SERDS and covers three processing approaches for SERDS spectra, for example, the reconstruction with a non-negative least square algorithm.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 31 Mai 2023 12:46
Letzte Änderung: 31 Mai 2023 12:46
URI: https://eref.uni-bayreuth.de/id/eprint/81067