Titelangaben
Luo, Ruihao ; Popp, Jürgen ; Bocklitz, Thomas:
Deep Learning for Raman Spectroscopy : A Review.
In: Analytica.
Bd. 3
(2022)
Heft 3
.
- S. 287-301.
ISSN 2673-4532
DOI: https://doi.org/10.3390/analytica3030020
Abstract
Raman spectroscopy (RS) is a spectroscopic method which indirectly measures the vibrational states within samples. This information on vibrational states can be utilized as spectroscopic fingerprints of the sample, which, subsequently, can be used in a wide range of application scenarios to determine the chemical composition of the sample without altering it, or to predict a sample property, such as the disease state of patients. These two examples are only a small portion of the application scenarios, which range from biomedical diagnostics to material science questions. However, the Raman signal is weak and due to the label-free character of RS, the Raman data is untargeted. Therefore, the analysis of Raman spectra is challenging and machine learning based chemometric models are needed. As a subset of representation learning algorithms, deep learning (DL) has had great success in data science for the analysis of Raman spectra and photonic data in general. In this review, recent developments of DL algorithms for Raman spectroscopy and the current challenges in the application of these algorithms will be discussed.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | deep learning; Raman spectroscopy; chemometrics; machine learning |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 530 Physik |
Eingestellt am: | 31 Mai 2023 12:42 |
Letzte Änderung: | 31 Mai 2023 12:42 |
URI: | https://eref.uni-bayreuth.de/id/eprint/81069 |