Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Force loading explains spatial sensing of ligands by cells

Titelangaben

Oria, Roger ; Wiegand, Tina ; Escribano, Jorge ; Elosegui-Artola, Alberto ; Uriarte, Juan Jose ; Moreno-Pulido, Cristian ; Platzman, Ilia ; Delcanale, Pietro ; Albertazzi, Lorenzo ; Navajas, Daniel ; Trepat, Xavier ; García-Aznar, José Manuel ; Cavalcanti-Adam, Elisabetta Ada ; Roca-Cusachs, Pere:
Force loading explains spatial sensing of ligands by cells.
In: Nature. Bd. 552 (2017) Heft 7684 . - S. 219-224.
ISSN 1476-4687
DOI: https://doi.org/10.1038/nature24662

Abstract

Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts1,2. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin–ligand bonds are separated by more than a few tens of nanometres3,4,5,6. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly3,7,8,9. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model10,11, in which individual integrin–ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Zelluläre Biomechanik > Lehrstuhl Zelluläre Biomechanik - Univ.-Prof. Dr. Dr. Elisabetta Ada Cavalcanti-Adam
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 07 Jun 2023 13:32
Letzte Änderung: 07 Jun 2023 13:32
URI: https://eref.uni-bayreuth.de/id/eprint/81200