Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren

A Clathrin light chain A reporter mouse for in vivo imaging of endocytosis

Title data

Grimm, Elisabeth ; van der Hoeven, Franciscus ; Sardella, Donato ; Willig, Katrin I. ; Engel, Ulrike ; Veits, Nisha ; Engel, Robert ; Cavalcanti-Adam, Elisabetta Ada ; Bestvater, Felix ; Bordoni, Luca ; Jennemann, Richard ; Schönig, Kai ; Schiessl, Ina Maria ; Sandhoff, Roger:
A Clathrin light chain A reporter mouse for in vivo imaging of endocytosis.
In: PLoS One. Vol. 17 (2022) Issue 9 . - e0273660.
ISSN 1932-6203

Abstract in another language

Clathrin-mediated endocytosis (CME) is one of the best studied cellular uptake pathways and its contributions to nutrient uptake, receptor signaling, and maintenance of the lipid membrane homeostasis have been already elucidated. Today, we still have a lack of understanding how the different components of this pathway cooperate dynamically in vivo. Therefore, we generated a reporter mouse model for CME by fusing eGFP endogenously in frame to clathrin light chain a (Clta) to track endocytosis in living mice. The fusion protein is expressed in all tissues, but in a cell specific manner, and can be visualized using fluorescence microscopy. Recruitment to nanobeads recorded by TIRF microscopy validated the functionality of the Clta-eGFP reporter. With this reporter model we were able to track the dynamics of Alexa594-BSA uptake in kidneys of anesthetized mice using intravital 2-photon microscopy. This reporter mouse model is not only a suitable and powerful tool to track CME in vivo in genetic or disease mouse models it can also help to shed light into the differential roles of the two clathrin light chain isoforms in health and disease.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Engineering Science > Chair Cellular Biomechanics > Chair Cellular Biomechanics - Univ.-Prof. Dr. Dr. Elisabetta Ada Cavalcanti-Adam
Result of work at the UBT: No
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 07 Jun 2023 06:33
Last Modified: 07 Jun 2023 06:33