Titelangaben
Ackermann, Lars ; Neuberger, Julian ; Käppel, Martin ; Jablonski, Stefan:
Bridging Research Fields : An Empirical Study on Joint, Neural Relation Extraction Techniques.
In: Indulska, Marta ; Reinhartz-Berger, Iris ; Cetina, Carlos ; Pastor, Oscar
(Hrsg.):
Advanced Information Systems Engineering : proceedings. -
Cham
: Springer
,
2023
. - S. 471-486
. - (Lecture Notes in Computer Science
; 13901
)
ISBN 978-3-031-34560-9
DOI: https://doi.org/10.1007/978-3-031-34560-9_28
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID InfoFormulizer AZ-1390-19 |
---|---|
Projektfinanzierung: |
Bayerische Forschungsstiftung |
Abstract
Information systems that have to deal with natural language text are often equipped with application-specific techniques for solving various Natural Language Processing (NLP) tasks. One of those tasks, extracting entities and their relations from human-readable text, is relevant for downstream tasks like automated model extraction (e.g. UML diagrams, business process models) and question answering (e.g. in chatbots). In NLP the rapidly evolving research field of Relation Extraction denotes a family of techniques for solving this task application-independently. Thus, the question arises why scientific publications about information systems often neglect those existing solutions. One supposed reason is that for reliably selecting an appropriate technique, a comprehensive study of the available alternatives is required. However, existing studies (i) cannot be considered complete due to irreproducible literature search methods and (ii) lack validity, since they compare relevant approaches based on different datasets and different experimental setups. This paper presents an empirical comparative study on domain-independent, open-source deep learning techniques for extracting entities and their relations jointly from texts. Limitations of former studies are overcome (i) by a rigorous and well-documented literature search and (ii) by evaluating relevant techniques on equal datasets in a unified experimental setup. The results1 show that a group of approaches form a reliable baseline for developing new techniques or for utilizing them directly in the above mentioned application scenarios.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Named Entity Recognition; Relation Extraction; Natural Language Processing; Artificial Intelligence |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik IV Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik IV > Lehrstuhl Angewandte Informatik IV - Univ.-Prof. Dr.-Ing. Stefan Jablonski Fakultäten |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik |
Eingestellt am: | 18 Jul 2023 07:27 |
Letzte Änderung: | 09 Aug 2023 10:43 |
URI: | https://eref.uni-bayreuth.de/id/eprint/86141 |