Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Bridging Research Fields : An Empirical Study on Joint, Neural Relation Extraction Techniques

Titelangaben

Ackermann, Lars ; Neuberger, Julian ; Käppel, Martin ; Jablonski, Stefan:
Bridging Research Fields : An Empirical Study on Joint, Neural Relation Extraction Techniques.
In: Indulska, Marta ; Reinhartz-Berger, Iris ; Cetina, Carlos ; Pastor, Oscar (Hrsg.): Advanced Information Systems Engineering : proceedings. - Cham : Springer , 2023 . - S. 471-486 . - (Lecture Notes in Computer Science ; 13901 )
ISBN 978-3-031-34560-9
DOI: https://doi.org/10.1007/978-3-031-34560-9_28

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
InfoFormulizer
AZ-1390-19

Projektfinanzierung: Bayerische Forschungsstiftung

Abstract

Information systems that have to deal with natural language text are often equipped with application-specific techniques for solving various Natural Language Processing (NLP) tasks. One of those tasks, extracting entities and their relations from human-readable text, is relevant for downstream tasks like automated model extraction (e.g. UML diagrams, business process models) and question answering (e.g. in chatbots). In NLP the rapidly evolving research field of Relation Extraction denotes a family of techniques for solving this task application-independently. Thus, the question arises why scientific publications about information systems often neglect those existing solutions. One supposed reason is that for reliably selecting an appropriate technique, a comprehensive study of the available alternatives is required. However, existing studies (i) cannot be considered complete due to irreproducible literature search methods and (ii) lack validity, since they compare relevant approaches based on different datasets and different experimental setups. This paper presents an empirical comparative study on domain-independent, open-source deep learning techniques for extracting entities and their relations jointly from texts. Limitations of former studies are overcome (i) by a rigorous and well-documented literature search and (ii) by evaluating relevant techniques on equal datasets in a unified experimental setup. The results1 show that a group of approaches form a reliable baseline for developing new techniques or for utilizing them directly in the above mentioned application scenarios.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: Named Entity Recognition; Relation Extraction; Natural Language Processing; Artificial Intelligence
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik IV
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik IV > Lehrstuhl Angewandte Informatik IV - Univ.-Prof. Dr.-Ing. Stefan Jablonski
Fakultäten
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke
000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 18 Jul 2023 07:27
Letzte Änderung: 09 Aug 2023 10:43
URI: https://eref.uni-bayreuth.de/id/eprint/86141