Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Carbon fluxes within tree-crop-grass agroforestry system : ¹³C field labeling and tracing

Title data

Zhou, Jie ; Shao, Guodong ; Kumar, Amit ; Shi, Lingling ; Kuzyakov, Yakov ; Pausch, Johanna:
Carbon fluxes within tree-crop-grass agroforestry system : ¹³C field labeling and tracing.
In: Biology and Fertility of Soils. Vol. 58 (2022) . - pp. 733-743.
ISSN 0178-2762
DOI: https://doi.org/10.1007/s00374-022-01659-4

Abstract in another language

Agroforestry systems are characterized by a high complexity between vegetation components and niche partitioning. In a crop-grass-tree agroforestry system, rape, willow, and grasses were in situ pulse labeled separately with 13CO2 for 6 h, and 13C was traced in shoots, roots, topsoil (0–15 cm) and subsoil (15–30 cm), microbial biomass carbon (C), and dissolved organic C, as well as respiration losses (CO2) up to 28 days after labeling to investigate the effects of vegetation components on C allocation belowground. 13C recovery in roots after 28 days was 7.0% of total assimilated C for grassland, which was 3.5- and 5.2-fold higher than that for rape and willow, respectively. The larger C allocation belowground in grassland was ascribed to its higher root/shoot ratio compared to willow and rape. Grassland facilitated higher accumulation of root-derived C in soil compared to rape (9.2% of recovered 13C) and compared to willow (1.6% of 13C). Willow retained more photosynthetic C aboveground and less was allocated to roots compared to rape. Although the C allocated to the top 15-cm soil was similar between willow and rape, willow facilitated C allocation in deeper soil compared to rape (0.6% vs. 0.2%). This could be explained by the lower microbial activity and subsequent weaker decomposition of rhizodeposits in 15–30-cm depth under willow. The net belowground C inputs in grassland, willow, and rape were 0.53, 0.06, and 0.10 g C m−2 month−1 of vegetation period, including rhizodeposition of 0.24, 0.05, and 0.04 g C m−2 month−1, respectively. Overall, integrating trees and grassland within cropland facilitates higher root-derived C input into soil, thus contributing to the soil C sequestration in agroforestry systems.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professor Agroecology > Professor Agroecology - Juniorprof. Dr. Johanna Pausch
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 500 Natural sciences
500 Science > 550 Earth sciences, geology
500 Science > 570 Life sciences, biology
Date Deposited: 17 Oct 2023 06:05
Last Modified: 17 Oct 2023 06:05
URI: https://eref.uni-bayreuth.de/id/eprint/87243