Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Microbial communities in paddy soils : differences in abundance and functionality between rhizosphere and pore water, the influence of different soil organic carbon, sulfate fertilization and cultivation time, and contribution to arsenic mobility and speciation

Titelangaben

Zecchin, Sarah ; Wang, Jiajia ; Martin, Maria ; Romani, Marco ; Planer-Friedrich, Britta ; Cavalca, Lucia:
Microbial communities in paddy soils : differences in abundance and functionality between rhizosphere and pore water, the influence of different soil organic carbon, sulfate fertilization and cultivation time, and contribution to arsenic mobility and speciation.
In: FEMS Microbiology Ecology. Bd. 99 (2023) Heft 11 . - fiad121.
ISSN 1574-6941
DOI: https://doi.org/10.1093/femsec/fiad121

Abstract

Abiotic factors and rhizosphere microbial populations influence arsenic accumulation in rice grains. Although mineral and organic surfaces are keystones in element cycling, localization of specific microbial reactions in the root/soil/pore water system is still unclear. Here, we tested if original unplanted soil, rhizosphere soil and pore water represented distinct ecological microniches for arsenic-, sulfur- and iron-cycling microorganisms and compared the influence of relevant factors such as soil type, sulfate fertilization and cultivation time. In rice open-air-mesocosms with two paddy soils (2.0% and 4.7% organic carbon), Illumina 16S rRNA gene sequencing demonstrated minor effects of cultivation time and sulfate fertilization that decreased Archaea-driven microbial networks and incremented sulfate-reducing and sulfur-oxidizing bacteria. Different compartments, characterized by different bacterial and archaeal compositions, had the strongest effect, with higher microbial abundances, bacterial biodiversity and interconnections in the rhizosphere vs pore water. Within each compartment, a significant soil type effect was observed. Higher percentage contributions of rhizosphere dissimilatory arsenate- and iron-reducing, arsenite-oxidizing, and, surprisingly, dissimilatory sulfate-reducing bacteria, as well as pore water iron-oxidizing bacteria in the lower organic carbon soil, supported previous chemistry-based interpretations of a more active S-cycling, a higher percentage of thioarsenates and lower arsenic mobility by sorption to mixed Fe(II)Fe(III)-minerals in this soil.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Umweltgeochemie > Professur Umweltgeochemie - Univ.-Prof. Dr. Britta Planer-Friedrich
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
Eingestellt am: 07 Nov 2023 06:46
Letzte Änderung: 07 Nov 2023 06:46
URI: https://eref.uni-bayreuth.de/id/eprint/87486