Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Assessing Deep Generative Models in Chemical Composition Space

Titelangaben

Türk, Hanna ; Landini, Elisabetta ; Kunkel, Christian ; Margraf, Johannes T. ; Reuter, Karsten:
Assessing Deep Generative Models in Chemical Composition Space.
In: Chemistry of Materials. Bd. 34 (2022) Heft 21 . - S. 9455-9467.
ISSN 1520-5002
DOI: https://doi.org/10.1021/acs.chemmater.2c01860

Abstract

The computational discovery of novel materials has been one of the main motivations behind research in theoretical chemistry for several decades. Despite much effort, this is far from a solved problem, however. Among other reasons, this is due to the enormous space of possible structures and compositions that could potentially be of interest. In the case of inorganic materials, this is exacerbated by the combinatorics of the periodic table since even a single-crystal structure can in principle display millions of compositions. Consequently, there is a need for tools that enable a more guided exploration of the materials design space. Here, generative machine learning models have recently emerged as a promising technology. In this work, we assess the performance of a range of deep generative models based on reinforcement learning, variational autoencoders, and generative adversarial networks for the prototypical case of designing Elpasolite compositions with low formation energies. By relying on the fully enumerated space of 2 million main-group Elpasolites, the precision, coverage, and diversity of the generated materials are rigorously assessed. Additionally, a hyperparameter selection scheme for generative models in chemical composition space is developed.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik - Univ.-Prof. Dr. Johannes Theo Margraf
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 13 Nov 2023 13:39
Letzte Änderung: 13 Nov 2023 13:39
URI: https://eref.uni-bayreuth.de/id/eprint/87659