Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Subgroup discovery points to the prominent role of charge transfer in breaking nitrogen scaling relations at single-atom catalysts on VS₂

Titelangaben

Li, Haobo ; Liu, Yunxia ; Chen, Ke ; Margraf, Johannes T. ; Li, Youyong ; Reuter, Karsten:
Subgroup discovery points to the prominent role of charge transfer in breaking nitrogen scaling relations at single-atom catalysts on VS₂.
In: ACS Catalysis. Bd. 11 (2021) Heft 13 . - S. 7906-7914.
ISSN 2155-5435
DOI: https://doi.org/10.1021/acscatal.1c01324

Abstract

The electrochemical nitrogen reduction reaction (NRR) is a much sought-after low-energy alternative to Haber–Bosch ammonia synthesis. Single-atom catalysts (SACs) promise to break scaling relations between adsorption energies of key NRR reaction intermediates that severely limit the performance of extended catalysts. Here, we perform a computational screening study of transition metal (TM) SACs supported on vanadium disulfide (VS2) and indeed obtain strongly broken scaling relations. A data-driven analysis by means of outlier detection and subgroup discovery reveals that this breaking is restricted to early TMs, while detailed electronic structure analysis rationalizes it in terms of strong charge transfer to the underlying support. This charge transfer selectively weakens *N and *NH adsorption and leads to promising NRR descriptors for SACs formed of earlier TMs like Ta that would conventionally not be associated with nitrogen reduction.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: subgroup discovery; density functional theory; computational screening; single-atom catalysts; electrochemical nitrogen reduction
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik - Univ.-Prof. Dr. Johannes Theo Margraf
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 13 Nov 2023 13:01
Letzte Änderung: 13 Nov 2023 13:01
URI: https://eref.uni-bayreuth.de/id/eprint/87682