Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

On the role of long-range electrostatics in machine-learned interatomic potentials for complex battery materials

Titelangaben

Staacke, Carsten G. ; Heenen, Hendrik H. ; Scheurer, Christoph ; Csányi, Gábor ; Reuter, Karsten ; Margraf, Johannes T.:
On the role of long-range electrostatics in machine-learned interatomic potentials for complex battery materials.
In: ACS Applied Energy Materials. Bd. 4 (2021) Heft 11 . - S. 12562-12569.
ISSN 2574-0962
DOI: https://doi.org/10.1021/acsaem.1c02363

Abstract

Modeling complex energy materials such as solid-state electrolytes (SSEs) realistically at the atomistic level strains the capabilities of state-of-the-art theoretical approaches. On one hand, the system sizes and simulation time scales required are prohibitive for first-principles methods such as the density functional theory. On the other hand, parameterizations for empirical potentials are often not available, and these potentials may ultimately lack the desired predictive accuracy. Fortunately, modern machine learning (ML) potentials are increasingly able to bridge this gap, promising first-principles accuracy at a much reduced computational cost. However, the local nature of these ML potentials typically means that long-range contributions arising, for example, from electrostatic interactions are neglected. Clearly, such interactions can be large in polar materials such as electrolytes, however. Herein, we investigate the effect that the locality assumption of ML potentials has on lithium mobility and defect formation energies in the SSE Li7P3S11. We find that neglecting long-range electrostatics is unproblematic for the description of lithium transport in the isotropic bulk. In contrast, (field-dependent) defect formation energies are only adequately captured by a hybrid potential combining ML and a physical model of electrostatic interactions. Broader implications for ML-based modeling of energy materials are discussed.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: machine learning; electrostatics; battery; solid-state electrolyte; locality
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik - Univ.-Prof. Dr. Johannes Theo Margraf
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 13 Nov 2023 12:58
Letzte Änderung: 13 Nov 2023 12:58
URI: https://eref.uni-bayreuth.de/id/eprint/87683