Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

On the role of long-range electrostatics in machine-learned interatomic potentials for complex battery materials

Title data

Staacke, Carsten G. ; Heenen, Hendrik H. ; Scheurer, Christoph ; Csányi, Gábor ; Reuter, Karsten ; Margraf, Johannes T.:
On the role of long-range electrostatics in machine-learned interatomic potentials for complex battery materials.
In: ACS Applied Energy Materials. Vol. 4 (2021) Issue 11 . - pp. 12562-12569.
ISSN 2574-0962
DOI: https://doi.org/10.1021/acsaem.1c02363

Abstract in another language

Modeling complex energy materials such as solid-state electrolytes (SSEs) realistically at the atomistic level strains the capabilities of state-of-the-art theoretical approaches. On one hand, the system sizes and simulation time scales required are prohibitive for first-principles methods such as the density functional theory. On the other hand, parameterizations for empirical potentials are often not available, and these potentials may ultimately lack the desired predictive accuracy. Fortunately, modern machine learning (ML) potentials are increasingly able to bridge this gap, promising first-principles accuracy at a much reduced computational cost. However, the local nature of these ML potentials typically means that long-range contributions arising, for example, from electrostatic interactions are neglected. Clearly, such interactions can be large in polar materials such as electrolytes, however. Herein, we investigate the effect that the locality assumption of ML potentials has on lithium mobility and defect formation energies in the SSE Li7P3S11. We find that neglecting long-range electrostatics is unproblematic for the description of lithium transport in the isotropic bulk. In contrast, (field-dependent) defect formation energies are only adequately captured by a hybrid potential combining ML and a physical model of electrostatic interactions. Broader implications for ML-based modeling of energy materials are discussed.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: machine learning; electrostatics; battery; solid-state electrolyte; locality
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Künstliche Intelligenz in der physiko-chemischen Materialanalytik
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Künstliche Intelligenz in der physiko-chemischen Materialanalytik > Chair Künstliche Intelligenz in der physiko-chemischen Materialanalytik - Univ.-Prof. Dr. Johannes Theo Margraf
Result of work at the UBT: No
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 13 Nov 2023 12:58
Last Modified: 13 Nov 2023 12:58
URI: https://eref.uni-bayreuth.de/id/eprint/87683