Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren

Gentle, Spontaneous Delamination of Layered Titanate Yielding New Types of Lithium Titanate Nanosheets

Title data

Cha, Gihoon ; Weiß, Sebastian ; Thanner, Jannik ; Rosenfeldt, Sabine ; Dudko, Volodymyr ; Uhlig, Felix ; Stevenson, Max ; Pietsch, Ingmar ; Siegel, Renée ; Friedrich, Daniel ; Bensch, Wolfgang ; Senker, Jürgen ; Sakai, Nobuyuki ; Sasaki, Takayoshi ; Breu, Josef:
Gentle, Spontaneous Delamination of Layered Titanate Yielding New Types of Lithium Titanate Nanosheets.
In: Chemistry of Materials. Vol. 35 (2023) Issue 17 . - pp. 7208-7217.
ISSN 1520-5002

Abstract in another language

Lepidocrocite-type layered titanate (K0.8Ti1.73Li0.27O4) typically is delaminated in a two-step process, where first K+ is exchanged for protons (H1.07Ti1.73O4·H2O) followed by deprotonation of the solid acid by tetraalkylammonium hydroxide upon which delamination sets in producing titanate nanosheets. Unfortunately, the harsh acidic conditions during proton exchange concomitantly leach all structural lithium and the obtained nanosheets (Ti0.87O20.52–) suffer from substantial structural defects. Here, we propose a one-step delamination of the pristine K-titanate, where the K+ is directly exchanged by a bulky, hydrophilic organocation (N-methyl-d-glucammonium, Meg+) that spontaneously delaminates in deionized water into titanate nanosheets without any significant loss of structural lithium. The new procedure not only saves one conversion step but also preserves the structural lithium, and moreover, the delamination itself seems to be gentler as indicated by larger aspect ratios of the resulting nanosheets obtained. Starting with the same pristine K-titanate, the established two-step delamination applying tetrabutylammonium hydroxide gave a d50 diameter of 3 μm, while direct delamination applying Meg+ yielded a substantially higher d50 diameter of 19 μm. The Meg+ delamination thus yields lithium titanate nanosheets of high aspect ratio of ≈20,000 in a high yield of ≈99% establishing the suggested procedure to be a highly attractive alternative to the established protocol, while giving access to hitherto unknown types of titanate nanosheets, in which pristine structural lithium ions are preserved.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Research Institutions
Research Institutions > Affiliated Institutes > Bavarian Polymer Institute (BPI)
Research Institutions > Affiliated Institutes
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 24 Nov 2023 07:45
Last Modified: 29 Jan 2024 06:47