Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Sustainable Hierarchically Porous Reusable Metal–Organic Framework Sponge as a Heterogeneous Catalyst and Catalytic Filter for Degradation of Organic Dyes

Titelangaben

Du, Yingying ; Ding, Chenhui ; Agarwal, Seema:
Sustainable Hierarchically Porous Reusable Metal–Organic Framework Sponge as a Heterogeneous Catalyst and Catalytic Filter for Degradation of Organic Dyes.
In: Advanced Energy & Sustainability Research. (2023) . - 2300218.
ISSN 2699-9412
DOI: https://doi.org/10.1002/aesr.202300218

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Integriertes Graduiertenkolleg „Transport in strukturierten Materialien“ (MGK)
492723217

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Advanced oxidation processes based on sulfate radical are considered one of the most promising wastewater treatment technologies currently. Among heterogeneous catalysts, cobalt metal–organic framework (MOF) has been widely reported. However, the inherent powder form of MOF hinders its practical application and reusability. Therefore, innovative methods to increase the loading capacity and the accessibility of MOF active sites in monolithic materials are required. Therefore, a simple and scalable method of fabricating a stable, hierarchical porous zeolitic imidazolate framework (ZIF-67) 3D sponge by growing MOF on a short electrospun fiber network is shown. The sponge can efficiently activate peroxymonosulfate and rapidly degrade an exemplary organic dye (Rhodamine B) with a degradation efficiency of 100%. The resulting multilevel, hierarchical porous structure is beneficial to the mass transfer of reagents making the catalytic process efficient. This also enables the use of the ZIF-67 as an efficient catalytic filter for continuous removal of dye. The sponge can be recycled and reused for several cycles due to its robustness without loss in efficiency. The proposed research strategy provides a new way to design MOF 3D monolithic materials.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Makromolekulare Chemie II
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen > SFB 1585 - MultiTrans – Structured functional materials for multiple transport in nanoscale confinements
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 15 Jan 2024 11:17
Letzte Änderung: 06 Feb 2024 05:57
URI: https://eref.uni-bayreuth.de/id/eprint/88227